Novus Biologicals products are now on bio-techne.com

PINK1 Antibody - BSA Free

Images

 
Western Blot: PINK1 Antibody [NB100-644] - Analysis of C-terminally V5His-tagged human PINK1 or N-teminally myc-tagged human PINK1 expressed in HEK293T cells using NB100-644 at 1:1000 dilution. Observed molecular weight ...read more
Simple Western: PINK1 Antibody [NB100-644] - Simple Western lane view shows a specific band for PINK1 at a dilution of 1:50 in 1.0 mg/ml of HeLa lysate. Molecular weight ~56 kDa. This experiment was performed under ...read more

Product Details

Summary
Reactivity Hu, PmSpecies Glossary
Applications WB, Simple Western
Clonality
Polyclonal
Host
Rabbit
Conjugate
Unconjugated
Format
BSA Free
Concentration
1 mg/ml

Order Details

Novus Biologicals is part of Bio-Techne

Shop this product on bio-techne.com

PINK1 Antibody - BSA Free Summary

Immunogen
PINK1 antibody was developed using a synthetic peptide made residues 258-274 (YRKSKRGPKQLAPHPNI) of human PINK1.
Localization
Localized mainly in cytosol and the mitochondrion.
Specificity
Reacts with residues residues 258-274 (YRKSKRGPKQLAPHPNI) of human PINK1 and will only bind to isoform 1.
Predicted Species
Primate (100%). Backed by our 100% Guarantee.
Isotype
IgG
Clonality
Polyclonal
Host
Rabbit
Gene
PINK1
Purity
Immunogen affinity purified
Innovator's Reward
Test in a species/application not listed above to receive a full credit towards a future purchase.

Applications/Dilutions

Dilutions
  • Simple Western 1:50
  • Western Blot 1:100-1:2000
Application Notes
Western blot - Use at 1:500 to 1:1,000 dilution. This antibody has only been tested on transfected lysates. Endogenous protein detection is unknown. No other applications have been tested.

In Simple Western only 10 - 15 uL of the recommended dilution is used per data point. Separated by Size-Wes, Sally Sue/Peggy Sue.
The observed molecular weight of the protein may vary from the listed predicted molecular weight due to post translational modifications, post translation cleavages, relative charges, and other experimental factors. Unprocessed PINK1 is 63 kDa which undergoes proteolytic processing to generate 55 kDa and 42 kDa cleaved forms, and bands at the mentioned positions may be expected in Western blot application.
Theoretical MW
62.7 kDa.
Disclaimer note: The observed molecular weight of the protein may vary from the listed predicted molecular weight due to post translational modifications, post translation cleavages, relative charges, and other experimental factors.
Publications
Read Publications using
NB100-644 in the following applications:

Reactivity Notes

Immunogen displays the following percentage of sequence identity for non-tested species: 82.4% with PINK1 protein of Mouse and Rat.

Packaging, Storage & Formulations

Storage
Store at 4C short term. Aliquot and store at -20C long term. Avoid freeze-thaw cycles.
Buffer
PBS
Preservative
0.02% Sodium Azide
Concentration
1 mg/ml
Purity
Immunogen affinity purified

Alternate Names for PINK1 Antibody - BSA Free

  • BRPK
  • EC 2.7.11.1
  • FLJ27236
  • PARK6
  • Parkinson disease (autosomal recessive) 6
  • PINK1
  • protein kinase BRPK
  • PTEN Induced Kinase 1
  • PTEN induced putative kinase 1
  • PTEN-induced putative kinase protein 1
  • serine/threonine-protein kinase PINK1, mitochondrial

Background

Phosphatase and Tensin Homolog (PTEN) is a tumor suppressor which acts as an antagonist to phosphatidylinositol 3-kinase (PI3K) signaling. PTEN exerts enzymatic activity as a phosphatidylinositol-3,4,5-trisphosphate (PIP3) phosphatase, opposing PI3K activity by reducing availability of PIP3 to proliferating cells. Loss of PTEN function leads to elevated PIP3 and increased activation of PI3K/AKT signaling in many types of cancer.

PINK1 (PTEN induced putative kinase 1) protein contains a N-terminal mitochondrial targeting sequence, putative transmembrane helix, linker region, serine (Ser65)/threonine (Thr257) kinase domain and C-terminal segment. PINK1 is translated in the cytosol, then translocated to the outer mitochondrial membrane where it is rapidly cleaved and degraded as a part of normal mitochondrial function. In damaged (depolarized) mitochondria, PINK1 becomes stabilized and accumulates, resulting in the subsequent phosphorylation of numerous proteins on the mitochondrial surface.

When PINK1 is imported into the cell, mitochondrial processing peptidase, presenilin-associated rhomboid-like protease and AFG3L2 cleave PINK1 and tag it for the ubiquitin-proteasome pathway, keeping low PINK1 protein expression at basal conditions (1,2). Accumulation of PINK1 in mitochondria indicate damage. PINK1 maintains mitochondrial function/integrity, provides protection against mitochondrial dysfunction during cellular stress, and is involved in the clearance of damaged mitochondria via selective autophagy (mitophagy) (3). PINK1 has a theoretical molecular weight of 63 kDa and undergoes proteolytic processing to generate at least two cleaved forms (55 kDa and 42 kDa).

Ultimately PARK2 (E3 Ubiquitin Ligase Parkin) is recruited to the damaged mitochondria where it is activated by 1) PINK-mediated phosphorylation of PARK2 at serine 65, and 2) PARK2 interaction with phosphorylated ubiquitin (also phosphorylated by PINK1 on serine 65) (4,5). There is a strong interplay between Parkin and PINK1, where loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by Parkin (2,4,5). Mutations in either Parkin or PINK1 alter mitochondrial turnover, resulting in the accumulation of defective mitochondria and, ultimately, neurodegeneration in Parkinson's disease. Mutations in the PINK1 gene located within the PARK6 locus on chromosome 1p35-p36 have been identified in patients with early-onset Parkinson's disease (6).

References

1.Rasool, S., Soya, N., Truong, L., Croteau, N., Lukacs, G. L., & Trempe, J. F. (2018). PINK1 autophosphorylation is required for ubiquitin recognition. EMBO Rep, 19(4). doi:10.15252/embr.201744981

2.Shiba-Fukushima, K., Arano, T., Matsumoto, G., Inoshita, T., Yoshida, S., Ishihama, Y., . . . Imai, Y. (2014). Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS Genet, 10(12), e1004861. doi:10.1371/journal.pgen.1004861

3.Vives-Bauza, C., Zhou, C., Huang, Y., Cui, M., de Vries, R. L., Kim, J., . . . Przedborski, S. (2010). PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A, 107(1), 378-383. doi:10.1073/pnas.0911187107

4.McWilliams, T. G., Barini, E., Pohjolan-Pirhonen, R., Brooks, S. P., Singh, F., Burel, S., . . . Muqit, M. M. K. (2018). Phosphorylation of Parkin at serine 65 is essential for its activation in vivo. Open Biol, 8(11). doi:10.1098/rsob.180108

5.Exner, N., Treske, B., Paquet, D., Holmstrom, K., Schiesling, C., Gispert, S., . . . Haass, C. (2007). Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci, 27(45), 12413-12418. doi:10.1523/jneurosci.0719-07.2007

6.Valente, E. M., Bentivoglio, A. R., Dixon, P. H., Ferraris, A., Ialongo, T., Frontali, M., . . . Wood, N. W. (2001). Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet, 68(4), 895-900. doi:10.1086/319522

Limitations

This product is for research use only and is not approved for use in humans or in clinical diagnosis. Primary Antibodies are guaranteed for 1 year from date of receipt.

Customers Who Viewed This Item Also Viewed...

NB300-270
Species: Ch, Hu, Mu, Rt
Applications: Flow, ICC/IF, IHC, IHC-P, IP, In vitro, Simple Western, WB
NBP2-15365
Species: Hu, Mu, Rt
Applications: ICC/IF, IHC, IHC-Fr, IHC-P, S-ELISA, WB
NB300-268
Species: Bv, Ce, Hu, I, Mu, Pl
Applications: Flow-IC, Flow, ICC/IF, IHC, IHC-Fr, IHC-P, IP, KO, WB
AF1438
Species: Hu
Applications: IHC, WB
NB110-41486
Species: Hu, Mu
Applications: IHC, Simple Western, WB
AF1458
Species: Hu, Mu, Rt
Applications: ICC, Simple Western, WB
NB600-1160
Species: Bv, Ca, Hu, Mu, Po, Rt, Ze
Applications: Flow, ICC/IF, IHC, IHC-Fr, IHC-P, Simple Western, WB
AF847
Species: Hu, Mu, Rt
Applications: CyTOF-ready, IHC, ICFlow, KO, Simple Western, WB
NB110-55288
Species: Fi, Hu, Mu, Pm, Rt
Applications: Flow-IC, Flow, ICC/IF, IHC, IHC-P, IP, Simple Western, WB
NBP2-21037
Species: Hu
Applications: IHC, IHC-P, WB
NBP2-31361
Species: Hu
Applications: IHC, IHC-P, WB
NBP1-81988
Species: Hu
Applications: IHC, IHC-P
H00007402-M01
Species: Hu
Applications: ELISA, ICC/IF, WB
NBP1-76651
Species: Hu, Mu, Rt
Applications: ELISA, ICC/IF, IHC, IHC-P, WB
NBP2-02477
Species: Ca, Hu, Pm, Mu, Rt
Applications: Flow, ICC/IF, IHC, IHC-P, IP, WB
NBP2-16148
Species: Hu, Mu
Applications: ICC/IF, IHC, IHC-P, WB
NBP2-25162
Species: Bv, Eq, Hu, Mu, Po, Rt
Applications: ICC/IF, IHC, PLA, WB
MAB7410
Species: Hu
Applications: ICC, KO, Simple Western, WB
H00009927-M03
Species: Hu, Rt
Applications: ELISA, IHC, IHC-P, RNAi, WB
NB100-644
Species: Hu, Pm
Applications: WB, Simple Western

Publications for PINK1 Antibody (NB100-644)(5)

We have publications tested in 1 confirmed species: Human.

We have publications tested in 4 applications: Block/Neutralize, Simple Western, WB, Western Blot.


Filter By Application
Block/Neutralize
(1)
Simple Western
(1)
WB
(3)
Western Blot
(1)
All Applications
Filter By Species
Human
(4)
All Species
Showing Publications 1 - 5 of 5.
Publications using NB100-644 Applications Species
Mankowski R, Wohlgemuth S, Bresciani G et al. Intraoperative Hemi-Diaphragm Electrical Stimulation Demonstrates Attenuated Mitochondrial Function without Change in Oxidative Stress in Cardiothoracic Surgery Patients Antioxidants 2023-04-27 [PMID: 37237876] (Simple Western, Human) Simple Western Human
Meng J, Lin B, Huang S et al. Melatonin exerts anti-angiogenic and anti-inflammatory effects in alkali-burned corneas Annals of Translational Medicine 2022-04-01 [PMID: 35571431] (Western Blot, Block/Neutralize) Western Blot, Block/Neutralize
Xiong H, Wang D, Chen L et al. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest. 2009-03-01 [PMID: 19229105] (WB, Human)

Details:
WB: Fig 1 (human brain cortex that had been IP'd with a Parkin antibody). The data showed that PINK1 co-IP'd with Parkin; Multiple Figs: SH-SY5Y cells overexpressing PINK1. See publication for details. IF: Fig S4 (human cortical neurons). Note: The specif
WB Human
Zhou C, Huang Y, Shao Y et al. The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci U S A 2008-08-19 [PMID: 18687899] (WB, Human) WB Human
Sim CH, Lio DS, Mok SS et al. C-terminal truncation and Parkinson's disease-associated mutations down-regulate the protein serine/threonine kinase activity of PTEN-induced kinase-1. Hum Mol Genet. 2006-11-01 [PMID: 17000703] (WB, Human)

Details:
WB: Fig 2A (purified recombinant human PINk1). Note: The specificity of the antibody was validated with recombinant human PINk by WB (Fig 2A).
WB Human

Reviews for PINK1 Antibody (NB100-644) (0)

There are no reviews for PINK1 Antibody (NB100-644). By submitting a review you will receive an Amazon e-Gift Card or Novus Product Discount.
  • Review with no image -- $10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen
  • Review with an image -- $25/€18/£15/$25 CAD/¥150 Yuan/¥2500 Yen

Product General Protocols

Find general support by application which include: protocols, troubleshooting, illustrated assays, videos and webinars.

Video Protocols

WB Video Protocol

FAQs for PINK1 Antibody (NB100-644). (Showing 1 - of FAQs).

    Secondary Antibodies

     

    Isotype Controls

    Additional PINK1 Products

    Research Areas for PINK1 Antibody (NB100-644)

    Find related products by research area.

    Blogs on PINK1. Showing 1-10 of 14 blog posts - Show all blog posts.

    Understanding Mitophagy Mechanisms: Canonical PINK1/Parkin, LC3-Dependent Piecemeal, and LC3-Independent Mitochondrial Derived Vesicles
    By Christina Towers, PhD What is Mitophagy?The selective degradation of mitochondria via double membrane autophagosome vesicles is called mitophagy. Damaged mitochondria can generate harmful amounts of reactive ox...  Read full blog post.

    New Players in the Mitophagy Game
    By Christina Towers, PhD Mitochondrial turn over via the lysosome, otherwise known as mitophagy, involves engulfment of mitochondria into double membrane autophagosomes and subsequent fusion with lysosomes. Much is al...  Read full blog post.

    Losing memory: Toxicity from mutant APP and amyloid beta explain the hippocampal neuronal damage in Alzheimer's disease
     By Jamshed Arslan Pharm.D.  Alzheimer's disease (AD) is an irreversible brain disorder that destroys memory and thinking skills. The telltale signs of AD brains are extracellular deposits of amy...  Read full blog post.

    There's an autophagy for that!
    By Christina Towers, PhDA critical mechanism that cells use to generate nutrients and fuel metabolism is through a process called autophagy.  This process is complex and involves over 20 different proteins, most of which are highly conserved acro...  Read full blog post.

    The role of Parkin and autophagy in retinal pigment epithelial cell (RPE) degradation
    The root of Parkinson’s disease (PD) points to a poorly regulated electron transport chain leading to mitochondrial damage, where many proteins need to work cohesively to ensure proper function.  The two key players of this pathway are PINK1, ...  Read full blog post.

    The identification of dopaminergic neurons using Tyrosine Hydroxylase in Parkinson's research and LRRK2
    Tyrosine hydroxylase (TH) is a crucial enzyme involved in the biosynthesis of dopamine, norepinephrine and epinephrine in the brain.  Specifically, TH catalyzes the conversion of l-tyrosine to l-dihydroxyphenylalanine (l-dopa).  The importance of t...  Read full blog post.

    Parkin - Role in Mitochondrial Quality Control and Parkinson's Disease
    Parkin/PARK2 is a cytosolic enzyme which gets recruited to cellular mitochondria damaged through depolarization, ROS or unfolded proteins accumulation, and exert protective effects by inducing mitophagy (mitochondrial autophagy). Parkin induces mit...  Read full blog post.

    PINK1 - performing mitochondrial quality control and protecting against Parkinson’s disease
    PTEN-induced putative kinase 1 (PINK1) is a serine/threonine kinase with important functions in mitochondrial quality control. Together with the Parkin protein, PINK1 is able to regulate the selective degradation of damaged mitochondria through aut...  Read full blog post.

    PINK1: All work and no fun
    The protein PINK1 is a mitochondrial-located serine/threonine kinase (PTK) that maintains organelle function and integrity. It not only protects organelles from cellular stress, but it also uses the selective auto-phagocytosis process for cleaning and...  Read full blog post.

    PINK1 and its role in Parkinson's disease
    PINK1 (PTEN induced putative kinase 1) is a mitochondrial serine/threonine kinase which maintains mitochondrial function/integrity, provides protection against mitochondrial dysfunction during cellular stress, potentially by phosphorylating mitochondr...  Read full blog post.

    Showing 1-10 of 14 blog posts - Show all blog posts.
    Read our latest blog and use the new citation tool on bio-techne.com

    Customers Who Bought This Also Bought

    Contact Information

    Product PDFs

    Calculators

    Concentration Calculator

    The concentration calculator allows you to quickly calculate the volume, mass or concentration of your vial. Simply enter your mass, volume, or concentration values for your reagent and the calculator will determine the rest.

    =
    ÷

    Review this Product

    Be the first to review our PINK1 Antibody - BSA Free and receive a gift card or discount.

    Bioinformatics

    Gene Symbol PINK1
    Entrez