Novus Biologicals products are now on bio-techne.com

PINK1 Antibody [Alexa Fluor® 647]

Images

 
There are currently no images for PINK1 Antibody (NB100-644AF647).

Every product we sell is backed by Novus' 100% Guarantee. If you have used this product, please submit your images and reviews to earn reward points.

Product Details

Summary
Reactivity Hu, PmSpecies Glossary
Applications WB, Simple Western
Clonality
Polyclonal
Host
Rabbit
Conjugate
Alexa Fluor 647

Order Details

Novus Biologicals is part of Bio-Techne

Shop this product on bio-techne.com

PINK1 Antibody [Alexa Fluor® 647] Summary

Immunogen
PINK1 antibody was developed using a synthetic peptide made residues 258-274 (YRKSKRGPKQLAPHPNI) of human PINK1.
Localization
Localized mainly in cytosol and the mitochondrion.
Specificity
Reacts with residues residues 258-274 (YRKSKRGPKQLAPHPNI) of human PINK1 and will only bind to isoform 1.
Predicted Species
Primate (100%). Backed by our 100% Guarantee.
Isotype
IgG
Clonality
Polyclonal
Host
Rabbit
Gene
PINK1
Purity
Immunogen affinity purified
Innovator's Reward
Test in a species/application not listed above to receive a full credit towards a future purchase.

Applications/Dilutions

Dilutions
  • Simple Western
  • Western Blot
Application Notes
Optimal dilution of this antibody should be experimentally determined.

Reactivity Notes

Immunogen displays the following percentage of sequence identity for non-tested species: 82.4% with PINK1 protein of Mouse and Rat.

Packaging, Storage & Formulations

Storage
Store at 4C in the dark.
Buffer
50mM Sodium Borate
Preservative
0.05% Sodium Azide
Purity
Immunogen affinity purified

Notes



Alexa Fluor (R) products are provided under an intellectual property license from Life Technologies Corporation. The purchase of this product conveys to the buyer the non-transferable right to use the purchased product and components of the product only in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The sale of this product is expressly conditioned on the buyer not using the product or its components, or any materials made using the product or its components, in any activity to generate revenue, which may include, but is not limited to use of the product or its components: (i) in manufacturing; (ii) to provide a service, information, or data in return for payment; (iii) for therapeutic, diagnostic or prophylactic purposes; or (iv) for resale, regardless of whether they are resold for use in research. For information on purchasing a license to this product for purposes other than as described above, contact Life Technologies Corporation, 5791 Van Allen Way, Carlsbad, CA 92008 USA or outlicensing@lifetech.com. This conjugate is made on demand. Actual recovery may vary from the stated volume of this product. The volume will be greater than or equal to the unit size stated on the datasheet.

Alternate Names for PINK1 Antibody [Alexa Fluor® 647]

  • BRPK
  • EC 2.7.11.1
  • FLJ27236
  • PARK6
  • Parkinson disease (autosomal recessive) 6
  • PINK1
  • protein kinase BRPK
  • PTEN Induced Kinase 1
  • PTEN induced putative kinase 1
  • PTEN-induced putative kinase protein 1
  • serine/threonine-protein kinase PINK1, mitochondrial

Background

Phosphatase and Tensin Homolog (PTEN) is a tumor suppressor which acts as an antagonist to phosphatidylinositol 3-kinase (PI3K) signaling. PTEN exerts enzymatic activity as a phosphatidylinositol-3,4,5-trisphosphate (PIP3) phosphatase, opposing PI3K activity by reducing availability of PIP3 to proliferating cells. Loss of PTEN function leads to elevated PIP3 and increased activation of PI3K/AKT signaling in many types of cancer.

PINK1 (PTEN induced putative kinase 1) protein contains a N-terminal mitochondrial targeting sequence, putative transmembrane helix, linker region, serine (Ser65)/threonine (Thr257) kinase domain and C-terminal segment. PINK1 is translated in the cytosol, then translocated to the outer mitochondrial membrane where it is rapidly cleaved and degraded as a part of normal mitochondrial function. In damaged (depolarized) mitochondria, PINK1 becomes stabilized and accumulates, resulting in the subsequent phosphorylation of numerous proteins on the mitochondrial surface.

When PINK1 is imported into the cell, mitochondrial processing peptidase, presenilin-associated rhomboid-like protease and AFG3L2 cleave PINK1 and tag it for the ubiquitin-proteasome pathway, keeping low PINK1 protein expression at basal conditions (1,2). Accumulation of PINK1 in mitochondria indicate damage. PINK1 maintains mitochondrial function/integrity, provides protection against mitochondrial dysfunction during cellular stress, and is involved in the clearance of damaged mitochondria via selective autophagy (mitophagy) (3). PINK1 has a theoretical molecular weight of 63 kDa and undergoes proteolytic processing to generate at least two cleaved forms (55 kDa and 42 kDa).

Ultimately PARK2 (E3 Ubiquitin Ligase Parkin) is recruited to the damaged mitochondria where it is activated by 1) PINK-mediated phosphorylation of PARK2 at serine 65, and 2) PARK2 interaction with phosphorylated ubiquitin (also phosphorylated by PINK1 on serine 65) (4,5). There is a strong interplay between Parkin and PINK1, where loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by Parkin (2,4,5). Mutations in either Parkin or PINK1 alter mitochondrial turnover, resulting in the accumulation of defective mitochondria and, ultimately, neurodegeneration in Parkinson's disease. Mutations in the PINK1 gene located within the PARK6 locus on chromosome 1p35-p36 have been identified in patients with early-onset Parkinson's disease (6).

References

1.Rasool, S., Soya, N., Truong, L., Croteau, N., Lukacs, G. L., & Trempe, J. F. (2018). PINK1 autophosphorylation is required for ubiquitin recognition. EMBO Rep, 19(4). doi:10.15252/embr.201744981

2.Shiba-Fukushima, K., Arano, T., Matsumoto, G., Inoshita, T., Yoshida, S., Ishihama, Y., . . . Imai, Y. (2014). Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering. PLoS Genet, 10(12), e1004861. doi:10.1371/journal.pgen.1004861

3.Vives-Bauza, C., Zhou, C., Huang, Y., Cui, M., de Vries, R. L., Kim, J., . . . Przedborski, S. (2010). PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A, 107(1), 378-383. doi:10.1073/pnas.0911187107

4.McWilliams, T. G., Barini, E., Pohjolan-Pirhonen, R., Brooks, S. P., Singh, F., Burel, S., . . . Muqit, M. M. K. (2018). Phosphorylation of Parkin at serine 65 is essential for its activation in vivo. Open Biol, 8(11). doi:10.1098/rsob.180108

5.Exner, N., Treske, B., Paquet, D., Holmstrom, K., Schiesling, C., Gispert, S., . . . Haass, C. (2007). Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci, 27(45), 12413-12418. doi:10.1523/jneurosci.0719-07.2007

6.Valente, E. M., Bentivoglio, A. R., Dixon, P. H., Ferraris, A., Ialongo, T., Frontali, M., . . . Wood, N. W. (2001). Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet, 68(4), 895-900. doi:10.1086/319522

Limitations

This product is for research use only and is not approved for use in humans or in clinical diagnosis. Primary Antibodies are guaranteed for 1 year from date of receipt.

Customers Who Viewed This Item Also Viewed...

NB300-270
Species: Ch, Hu, Mu, Rt
Applications: Flow, ICC/IF, IHC, IHC-P, IP, In vitro, Simple Western, WB
NBP2-15365
Species: Hu, Mu, Rt
Applications: ICC/IF, IHC, IHC-Fr, IHC-P, S-ELISA, WB
NB300-268
Species: Bv, Ce, Hu, I, Mu, Pl
Applications: Flow-IC, Flow, ICC/IF, IHC, IHC-Fr, IHC-P, IP, KO, WB
AF1438
Species: Hu
Applications: IHC, WB
NB110-41486
Species: Hu, Mu
Applications: IHC, Simple Western, WB
AF1458
Species: Hu, Mu, Rt
Applications: ICC, Simple Western, WB
NB600-1160
Species: Bv, Ca, Hu, Mu, Po, Rt, Ze
Applications: Flow, ICC/IF, IHC, IHC-Fr, IHC-P, Simple Western, WB
AF847
Species: Hu, Mu, Rt
Applications: CyTOF-ready, IHC, ICFlow, KO, Simple Western, WB
NB110-55288
Species: Fi, Hu, Mu, Pm, Rt
Applications: Flow-IC, Flow, ICC/IF, IHC, IHC-P, IP, Simple Western, WB
NBP2-21037
Species: Hu
Applications: IHC, IHC-P, WB
NBP2-31361
Species: Hu
Applications: IHC, IHC-P, WB
NBP1-81988
Species: Hu
Applications: IHC, IHC-P
H00007402-M01
Species: Hu
Applications: ELISA, ICC/IF, WB
NBP1-76982
Species: Hu, Mu, Rt
Applications: ELISA, ICC/IF, IHC, IHC-P, WB
NBP2-02477
Species: Ca, Hu, Pm, Mu, Rt
Applications: Flow, ICC/IF, IHC, IHC-P, IP, WB
NBP2-16148
Species: Hu, Mu
Applications: ICC/IF, IHC, IHC-P, WB
NBP2-25162
Species: Bv, Eq, Hu, Mu, Po, Rt
Applications: ICC/IF, IHC, PLA, WB
MAB7410
Species: Hu
Applications: ICC, KO, Simple Western, WB
H00009927-M03
Species: Hu, Rt
Applications: ELISA, IHC, IHC-P, RNAi, WB
NB100-644AF647
Species: Hu, Pm
Applications: WB, Simple Western

Publications for PINK1 Antibody (NB100-644AF647) (0)

There are no publications for PINK1 Antibody (NB100-644AF647).
By submitting your publication information earn gift cards and discounts for future purchases.

Reviews for PINK1 Antibody (NB100-644AF647) (0)

There are no reviews for PINK1 Antibody (NB100-644AF647). By submitting a review you will receive an Amazon e-Gift Card or Novus Product Discount.
  • Review with no image -- $10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen
  • Review with an image -- $25/€18/£15/$25 CAD/¥150 Yuan/¥2500 Yen

Product General Protocols

Find general support by application which include: protocols, troubleshooting, illustrated assays, videos and webinars.

Video Protocols

WB Video Protocol

FAQs for PINK1 Antibody (NB100-644AF647). (Showing 1 - of FAQ).

    Secondary Antibodies

     

    Isotype Controls

    Additional PINK1 Products

    Research Areas for PINK1 Antibody (NB100-644AF647)

    Find related products by research area.

    Blogs on PINK1. Showing 1-10 of 14 blog posts - Show all blog posts.

    Understanding Mitophagy Mechanisms: Canonical PINK1/Parkin, LC3-Dependent Piecemeal, and LC3-Independent Mitochondrial Derived Vesicles
    By Christina Towers, PhD What is Mitophagy?The selective degradation of mitochondria via double membrane autophagosome vesicles is called mitophagy. Damaged mitochondria can generate harmful amounts of reactive ox...  Read full blog post.

    New Players in the Mitophagy Game
    By Christina Towers, PhD Mitochondrial turn over via the lysosome, otherwise known as mitophagy, involves engulfment of mitochondria into double membrane autophagosomes and subsequent fusion with lysosomes. Much is al...  Read full blog post.

    Losing memory: Toxicity from mutant APP and amyloid beta explain the hippocampal neuronal damage in Alzheimer's disease
     By Jamshed Arslan Pharm.D.  Alzheimer's disease (AD) is an irreversible brain disorder that destroys memory and thinking skills. The telltale signs of AD brains are extracellular deposits of amy...  Read full blog post.

    There's an autophagy for that!
    By Christina Towers, PhDA critical mechanism that cells use to generate nutrients and fuel metabolism is through a process called autophagy.  This process is complex and involves over 20 different proteins, most of which are highly conserved acro...  Read full blog post.

    The role of Parkin and autophagy in retinal pigment epithelial cell (RPE) degradation
    The root of Parkinson’s disease (PD) points to a poorly regulated electron transport chain leading to mitochondrial damage, where many proteins need to work cohesively to ensure proper function.  The two key players of this pathway are PINK1, ...  Read full blog post.

    The identification of dopaminergic neurons using Tyrosine Hydroxylase in Parkinson's research and LRRK2
    Tyrosine hydroxylase (TH) is a crucial enzyme involved in the biosynthesis of dopamine, norepinephrine and epinephrine in the brain.  Specifically, TH catalyzes the conversion of l-tyrosine to l-dihydroxyphenylalanine (l-dopa).  The importance of t...  Read full blog post.

    Parkin - Role in Mitochondrial Quality Control and Parkinson's Disease
    Parkin/PARK2 is a cytosolic enzyme which gets recruited to cellular mitochondria damaged through depolarization, ROS or unfolded proteins accumulation, and exert protective effects by inducing mitophagy (mitochondrial autophagy). Parkin induces mit...  Read full blog post.

    PINK1 - performing mitochondrial quality control and protecting against Parkinson’s disease
    PTEN-induced putative kinase 1 (PINK1) is a serine/threonine kinase with important functions in mitochondrial quality control. Together with the Parkin protein, PINK1 is able to regulate the selective degradation of damaged mitochondria through aut...  Read full blog post.

    PINK1: All work and no fun
    The protein PINK1 is a mitochondrial-located serine/threonine kinase (PTK) that maintains organelle function and integrity. It not only protects organelles from cellular stress, but it also uses the selective auto-phagocytosis process for cleaning and...  Read full blog post.

    PINK1 and its role in Parkinson's disease
    PINK1 (PTEN induced putative kinase 1) is a mitochondrial serine/threonine kinase which maintains mitochondrial function/integrity, provides protection against mitochondrial dysfunction during cellular stress, potentially by phosphorylating mitochondr...  Read full blog post.

    Showing 1-10 of 14 blog posts - Show all blog posts.
    mFluor Violet Conjugated Antibodies

    Customers Who Bought This Also Bought

    Contact Information

    Product PDFs

    Calculators

    Concentration Calculator

    The concentration calculator allows you to quickly calculate the volume, mass or concentration of your vial. Simply enter your mass, volume, or concentration values for your reagent and the calculator will determine the rest.

    =
    ÷

    Review this Product

    Be the first to review our PINK1 Antibody [Alexa Fluor® 647] and receive a gift card or discount.

    Bioinformatics

    Gene Symbol PINK1