CD3 Antibody (Hu113) [CoraFluor™ 1] Summary
Description |
CoraFluor(TM) 1 is a high performance terbium-based TR-FRET (Time-Resolved Fluorescence Resonance Energy Transfer) or TRF (Time-Resolved Fluorescence) donor for high throughput assay development. CoraFluor(IM) 1 absorbs UV light at approximately 340 nm, and emits at approximately 490 nm, 545 nm, 585 nm and 620 nm. It is compatible with common acceptor dyes that absorb at the emission wavelengths of CoraFluor(TM) 1. CoraFluor(TM) 1 can be used for the development of robust and scalable TR-FRET binding assays such as target engagement, ternary complex, protein-protein interaction and protein quantification assays. |
Additional Information |
Recombinant Monoclonal Antibody For Research Use Only |
Immunogen |
Human CD3 |
Specificity |
Detects Human CD3 based on Teplizumab therapeutic antibody. This non-therapeutic antibody uses the same variable region sequence as the therapeutic antibody Teplizumab.
This product is for research
use only. |
Isotype |
IgG1 |
Clonality |
Monoclonal |
Host |
Human |
Gene |
CD3E |
Purity |
Protein A or G purified |
Innovator's Reward |
Test in a species/application not listed above to receive a full credit towards a future purchase. |
Applications/Dilutions
Dilutions |
- CyTOF-ready
- Flow Cytometry
|
Application Notes |
Optimal dilution of this antibody should be experimentally determined. |
Packaging, Storage & Formulations
Storage |
Store at 4C in the dark. Do not freeze. |
Buffer |
PBS |
Preservative |
No Preservative |
Purity |
Protein A or G purified |
Notes
CoraFluor (TM) is a trademark of Bio-Techne Corp. Sold for research purposes only under agreement from Massachusetts General Hospital. US patent 2022/0025254
Alternate Names for CD3 Antibody (Hu113) [CoraFluor™ 1]
Background
CD3 (cluster of differentiation marker 3) is a multi-subunit transmembrane protein that is expressed on the surface of T-cells and forms a complex with the T-cell receptor (TCR) (1-3). CD3 consists of four distinct membrane protein isoforms: CD3-delta (delta), CD3-epsilon (epsilon), CD3-gamma, and CD3-zeta (1-3). The CD3 subunits organize into a complex containing three sets of dimers: CD3-epsilondelta, CD3-epsilongamma, CD3-zetazeta. The CD3 complex binds to the TCR heterodimer (alphabeta or gammadelta) to form the transmembrane TCR-CD3 complex (2-3). Structurally, the CD3 protein chains have an extracellular region, a transmembrane domain, and a cytoplasmic trail region (2-3). The CD3-epsilondelta and CD3-epsilongamma heterodimers also contain an extracellular immunoglobulin (Ig)-like domain, classifying them as part of the immunoglobulin superfamily (2-3). The cytoplasmic tail of each CD3 chain also contains one (delta, epsilon, gamma) or three (zeta) immunoreceptor tyrosine-based activation motifs (ITAMs), for a total of 10 ITAMs in the whole CD3 complex (2-3). Following, TCR binding to peptide major histocompatibility complex (p-MHC), the CD3 ITAMs are phosphorylated by the Src kinase Lck and are important for recruiting ZAP70 and initiating TCR signaling cascade activation (2). While similar in structure, the CD3 chains vary in length and molecular weight (4). The CD3-delta is 171 amino acids (aa) in length with a theoretical molecular weight of 18.9 kDa (4, 5). The CD3-epsilon is 204 aa long and has a theoretical molecular weight of 23 kDa (4, 5). CD3-gamma is 182 aa long with a theoretical molecular weight of 20.4 kDa (4, 5). Finally, CD3-zeta is 164 aa in length with a theoretical molecular weight of 18.6 kDa (4, 5).
CD3 proteins are expressed on the surface of thymocytes during thymocyte development, proliferation, and maturation to T-cells (4, 6, 7). During T-cell development CD4-CD8- double negative (DN) cells differentiate to CD4+CD8+ double positive (DP) cells before progressing to single positive (SP) CD4+ helper T-cells or CD8+ cytotoxic T-cells (4, 6, 7). As CD3 plays an important role in thymocyte development, it is understandable that CD3 defects and mutations in CD3 protein chains cause severe combined immunodeficiencies (SCIDs) (8). Additionally, a subset of CD3+ T-cells that co-express CD20 are described in a variety of diseases including rheumatoid arthritis, multiple sclerosis, CD20+ T-cell leukemia/lymphoma, and HIV (9). Clinical trials and animal models have shown that anti-CD3 monoclonal antibodies are a promising treatment modality for inflammatory disorders and autoimmune diseases, such as type I diabetes (10).
References
1. Chetty, R., & Gatter, K. (1994). CD3: structure, function, and role of immunostaining in clinical practice. The Journal of pathology. https://doi.org/10.1002/path.1711730404
2. Mariuzza, R. A., Agnihotri, P., & Orban, J. (2020). The structural basis of T-cell receptor (TCR) activation: An enduring enigma. The Journal of biological chemistry. https://doi.org/10.1074/jbc.REV119.009411
3. Kuhns, M. S., Davis, M. M., & Garcia, K. C. (2006). Deconstructing the form and function of the TCR/CD3 complex. Immunity. https://doi.org/10.1016/j.immuni.2006.01.006
4. Clevers, H., Alarcon, B., Wileman, T., & Terhorst, C. (1988). The T cell receptor/CD3 complex: a dynamic protein ensemble. Annual review of immunology. https://doi.org/10.1146/annurev.iy.06.040188.003213
5. Uniprot: CD3-delta (P04234), CD3-epsilon (P07766), CD3-gamma (P09693), CD3-zeta (P20963)
6. D'Acquisto, F., & Crompton, T. (2011). CD3+CD4-CD8- (double negative) T cells: saviours or villains of the immune response?. Biochemical pharmacology. https://doi.org/10.1016/j.bcp.2011.05.019
7. Dave V. P. (2009). Hierarchical role of CD3 chains in thymocyte development. Immunological reviews. https://doi.org/10.1111/j.1600-065X.2009.00835.x
8. Fischer, A., de Saint Basile, G., & Le Deist, F. (2005). CD3 deficiencies. Current opinion in allergy and clinical immunology. https://doi.org/10.1097/01.all.0000191886.12645.79
9. Chen, Q., Yuan, S., Sun, H., & Peng, L. (2019). CD3+CD20+ T cells and their roles in human diseases. Human immunology. https://doi.org/10.1016/j.humimm.2019.01.001
10. Kuhn, C., & Weiner, H. L. (2016). Therapeutic anti-CD3 monoclonal antibodies: from bench to bedside. Immunotherapy. https://doi.org/10.2217/imt-2016-0049
Limitations
This product is for research use only and is not approved for use in humans or in clinical diagnosis. Primary Antibodies are
guaranteed for 1 year from date of receipt.
Customers Who Viewed This Item Also Viewed...
Species: Ca, Hu, Mu, Po
Applications: Flow, ICC/IF, IHC, IHC-Fr, IHC-P, KD
Species: Hu
Applications: BA
Species: Mu, Rt
Applications: Cell Depl, CyTOF-ready, Flow, ICC/IF, IHC, IHC-Fr, IHC-P, IP, InhibTFunc
Species: Ca, Hu, Mu, Po, Rb, Rt
Applications: Dual ISH-IHC, Flow, ICC/IF, IHC, IHC-Fr, IHC-P, Simple Western, WB
Species: Mu
Applications: CyTOF-reported, Flow
Species: Hu
Applications: BA
Species: Hu
Applications: IHC, IHC-P, Simple Western, WB
Species: Hu
Applications: IHC, IHC-P, WB
Species: Hu
Applications: CyTOF-ready, ELISA, Flow, ICC/IF, IHC, IHC-P, PA, WB
Species: Hu, Mu
Applications: Flow-IC, Flow, ICC/IF, IHC, IHC-Fr, IHC-P, IP, WB
Species: Hu
Applications: Flow, ICC/IF, IHC, IHC-P, IP, Simple Western, WB
Species: Hu
Applications: ICC, WB
Species: Hu
Applications: BA
Species: Mu
Applications: CyTOF-ready, Flow, ICC, IHC, WB
Species: Hu, Mu
Applications: CyTOF-ready, Flow, ICC, KO, Simple Western, WB
Species: Hu, Mu(-), Rt(-)
Applications: IHC, IHC-Fr, IP
Species: Hu
Applications: BA
Species: Hu, Mu, Pm
Applications: IHC, IHC-P, WB
Publications for CD3 Antibody (FAB9929CL1) (0)
There are no publications for CD3 Antibody (FAB9929CL1).
By submitting your publication information earn gift cards and discounts for future purchases.
Reviews for CD3 Antibody (FAB9929CL1) (0)
There are no reviews for CD3 Antibody (FAB9929CL1).
By submitting a review you will receive an Amazon e-Gift Card or Novus Product Discount.
- Review with no image -- $10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen
- Review with an image -- $25/€18/£15/$25 CAD/¥150 Yuan/¥2500 Yen
Product General Protocols
Find general support by application which include: protocols, troubleshooting, illustrated assays, videos and webinars.
FAQs for CD3 Antibody (FAB9929CL1) (0)