Species: Hu, Mu, Rt, Ma, Pm, Rb
Applications: WB, ELISA, GS, IP
Host: Rabbit Polyclonal
Species: Hu, Mu, Rt, Bv, Gp, Ha, Pm, Rb
Applications: WB, ELISA, GS, ICC/IF, IHC, IP
Host: Rat Monoclonal
Species: Hu, Mu, Rt, Bv, Gp, Ha, Pm, Rb
Applications: WB, ELISA, GS, ICC/IF, IHC, IP
Host: Rat Monoclonal
Species: Rt
Applications: ELISA
Species: Mu
Applications: ELISA
Species: Hu
Applications: ELISA
Species: Hu
Applications: WB
Species: Hu
Applications: PAGE
Species: Hu
Applications: AC
Description
Human cells respond to heat stress by inducing the binding of a pre-existing transcriptional activator (heat shock factor, HSF) to DNA (1). Induction of heat shock protein (HSP) gene expression by stress is initiated by binding of HSF1 to HSP gene promoters to increase their transcription. The cytoprotective functions of these HSPs are essential for cell survival, and thus it is critical that inducible HSP gene expression be executed rapidly and efficiently. There is an interaction between heat shock factor 1 (HSF1) and symplekin, a protein known to form a complex with the polyadenylation factors CstF and CPSF. HSF1-symplekin complexes are detected only after stress treatment, and these two proteins co-localize in punctate nuclear structures in stressed cells (2). A chaperone/Hsp functioning as repressor of heat shock transcription factor (HSF) could make activation of hsp genes dependent on protein unfolding. It has been concluded that Hsp90, by itself and/or associated with multichaperone complexes, is a major repressor of HSF1 (3).
Bioinformatics
Entrez |
Mouse Human Rat |
Uniprot |
Human Human Human Human |
Product By Gene ID |
3297 |
Alternate Names |
- heat shock factor protein 1
- heat shock transcription factor 1HSTF1HSF 1
- HSTF 1
|