Novus Biologicals products are now on bio-techne.com

ATG5

Key Targets in Apoptosis, Necroptosis, and Autophagy

Cell death/recycling pathways such as apoptosis, necroptosis, and autophagy are an integral part of the growth, development, homeostasis as well as the pathophysiology in the life of living organisms. These signaling pathways are highly regulated and some of their key regulatory targets are discussed below.

Apoptosis

Apoptosis, programmed cell death, is primarily characterized by the activation of caspases which further regulate the mass cleavage of proteins and DNA. Some of major the proteins responsible for various apoptotic events are:

The role of Parkin and autophagy in retinal pigment epithelial cell (RPE) degradation

The root of Parkinson’s disease (PD) points to a poorly regulated electron transport chain leading to mitochondrial damage, where many proteins need to work cohesively to ensure proper function.  The two key players of this pathway are PINK1, also known as PTEN or PARK6, and Parkin, also known as PARK2 - where PINK1 acts as an upstream effector of Parkin to regulate mitochondrial dynamics.  Mitochondria must maintain a healthy equilibrium and do so by undergoing a series of fission and fusion event

The use of the autophagy marker LC3 in western blot, immunocytochemistry and flow cytometry research applications as an indicator of autophagy

The process of autophagy, or lysosome-mediated degradation of damaged proteins and organelles in the cytosol, is a vital cellular process that acts as a quality control mechanism for proteins and organelles. The misregulation of autophagy can lead to an imbalance of cellular homeostasis and the subsequent development of disease.  Therefore, the study of autophagy is at the forefront of neuroscience and cancer research, among others.

The use of actin as a loading control in research on fruiting-body development and vegetative growth in Sordaria macrospora research

Sordaria macrospora is a filamentous fungus that serves as very useful system for scientific research due to a short life cycle and easy manipulation.  Just like any other model organism, it is important to have an effective loading control to validate experiments in the Sordaria macrospora.  In addition, the growth and morphogenesis of filamentous fungi is dependent on actin organization.  Actin is a very abundant protein across biological species and can transition between monomeric and filamentous states.  Actin has an alpha and beta isoform, both of which sha

Required proteins for p62/SQSTM1 regulation and a role for p62/SQSTM1 in neuronal autophagy

Autophagy is a crucial cellular process that clears the cell of protein aggregates, toxins, and damaged cell products. Accumulation of toxins, damaged cell products and unwanted proteins has been proven to play a role in aging and many forms of disease and cancer.

The role of LC3B and autophagy in alcohol induced liver disease

Autophagy is a crucial intracellular pathway that manages the degradation and recycling of long-lived proteins in the cell. The LC3 (or light chain 3) family is composed of three members, LC3A, LC3B and LC3C. Upon autophagy induction, LC3 is cleaved, causing the release of a C-terminal glycine that is required for phospholipid conjugation.  This process is vital to the formation of the autophagosome, a double membrane structure that delivers proteins to the lysosome during autophagy.

Tat-Beclin 1: The pioneering of an autophagy-inducing peptide

Autophagy is an essential process that maintains cellular homeostasis and carries out lysosome-mediated degradation of unwanted proteins in the cytoplasm.  Because of this regulatory function, autophagy is often examined when looking at disease pathways.  While our immune system initiates the removal of viruses and pathogens through the autophagic pathway, viruses, such as HIV, have developed a way to evade this process through inhibition.  Therefore, developing a reliable way to examine the molecular process of this inhibition and interaction is very desired.  The central autophagy

WIPI1 - An essential regulator of early autophagosome assembly

WD repeat domain phosphoinositide-interacting protein 1 (WIPI) is involved in the lysosomal degradation of cytoplasmic components during starvation-induced autophagy. WIPI1 is a seven bladed beta-propeller protein that provides a scaffold for the assembly of multimeric protein complexes (1). During the assembly of the autophagosome WIPI1 interacts with the lipid phosphatidylinositol-3 phosphate (PI3P) and mediates the recruitment of the large multimeric complex of ATG12-ATG5-ATG16 (1).

ATG4C - A regulator of the early steps of autophagosome assembly

Autophagy is an important cellular process that maintains homeostasis by degrading and recycling damaged proteins and organelles. Autophagy receptors, such as p62/SQSTM1, recognize these intracellular cargo and mediate their engulfment by the double-membrane autophagosome. The autophagosomes are subsequently targeted to the lysosome for degradation. An early regulatory step in this process is the activation and lipidation of ATG8 related proteins such as microtubule-associated protein-1 light chain 3 (LC3).

ATG16L2 - An autophagy-related protein with unknown functions

Autophagy is a process by which cells degrade and recycle damaged organelles or misfolded proteins. These various cargo are engulfed in a double-membrane structure called the autophagosome. The autophagosome then fuses with the lysosome to facilitate the degradation of the cargo. This process requires the concerted effort of an extensive network of proteins. One of the early steps of autophagosome assembly is the formation of the large multimeric ATG12-ATG5-ATG16 complex.

Pages